Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compositionally-graded InGaAs-InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs

Identifieur interne : 003290 ( Main/Repository ); précédent : 003289; suivant : 003291

Compositionally-graded InGaAs-InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs

Auteurs : RBID : Pascal:11-0311009

Descripteurs français

English descriptors

Abstract

Two approaches for metalorganic chemical vapor deposition (MOCVD)-grown compositionally graded metamorphic buffers on 6° offcut bulk GaAs were investigated. The first approach consisted of tandem graded layers of InGaAs and InGaP with compositional grading of the In concentration. This tandem approach was found to be necessary because phase separation in the InGaAs alloys leads to surface roughening and high threading dislocation density when grading to lattice constants greater than that of In0.30Ga0.70As. An InxGa1-xAs graded buffer was grown at 700 °C for low In concentration (XIn = 0-0.10) and then the growth temperature was decreased to 450 °C for high In concentration (XIn = 0.10-0.30) to suppress the phase separation. The growth temperature was then increased to 650 °C and the graded InyGa1-y P system was implemented to continue grading the lattice constant from In0.30Ga0.70As to InP, which allowed us to achieve InP on 6° offcut GaAs with a threading dislocation density of 7.9 × 106 cm-2 and an RMS surface roughness of 33.0 nm on a 40 μm x 40 μm AFM scale. The second approach used GaAsSb alloys with compositional grading of the Sb concentration. Graded mixed-anion GaAsSb alloys grown at 575 °C did not exhibit phase separation, resulting in high quality InP lattice constant films on GaAs without the need to transition to another material system for compositional grading. We demonstrated a GaAsSb alloy on GaAs (with a grading rate of 1.06% strain/μm) lattice-matched to InP with a threading dislocation density of 4.7 x 106cm-2 and a roughness of 7.4 nm on a 40 μm x 40 μm AFM scale. It was further demonstrated that the threading dislocation density of the GaAsSb graded buffer can be lowered to 2.7 x 106 cm-2 with a slower grading rate (0.64% strain/μm).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0311009

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Compositionally-graded InGaAs-InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs</title>
<author>
<name>LI YANG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bulsara, Mayank T" uniqKey="Bulsara M">Mayank T. Bulsara</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Kenneth E" uniqKey="Lee K">Kenneth E. Lee</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Eugene A" uniqKey="Fitzgerald E">Eugene A. Fitzgerald</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0311009</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0311009 INIST</idno>
<idno type="RBID">Pascal:11-0311009</idno>
<idno type="wicri:Area/Main/Corpus">002E86</idno>
<idno type="wicri:Area/Main/Repository">003290</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony</term>
<term>Atomic force microscopy</term>
<term>Crystal structure</term>
<term>Dislocation density</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>High density</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Indium phosphide</term>
<term>Lattice parameters</term>
<term>Lead alloys</term>
<term>MOCVD</term>
<term>Mechanical properties</term>
<term>Phase separation</term>
<term>Roughness</term>
<term>Strain rate</term>
<term>Ternary compounds</term>
<term>Thin films</term>
<term>Threading dislocation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode MOCVD</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Séparation phase</term>
<term>Rugosité</term>
<term>Densité élevée</term>
<term>Dislocation filetée</term>
<term>Densité dislocation</term>
<term>Structure cristalline</term>
<term>Paramètre cristallin</term>
<term>Mécanisme croissance</term>
<term>Microscopie force atomique</term>
<term>Couche mince</term>
<term>Vitesse déformation</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Plomb alliage</term>
<term>Phosphure d'indium</term>
<term>Antimoine</term>
<term>Propriété mécanique</term>
<term>Composé ternaire</term>
<term>InGaAs</term>
<term>InGaP</term>
<term>GaAsSb</term>
<term>Substrat indium phosphure</term>
<term>Substrat InP</term>
<term>8115G</term>
<term>6475</term>
<term>6172L</term>
<term>6166</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Antimoine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two approaches for metalorganic chemical vapor deposition (MOCVD)-grown compositionally graded metamorphic buffers on 6° offcut bulk GaAs were investigated. The first approach consisted of tandem graded layers of InGaAs and InGaP with compositional grading of the In concentration. This tandem approach was found to be necessary because phase separation in the InGaAs alloys leads to surface roughening and high threading dislocation density when grading to lattice constants greater than that of In
<sub>0.30</sub>
Ga
<sub>0.70</sub>
As. An In
<sub>x</sub>
Ga
<sub>1-x</sub>
As graded buffer was grown at 700 °C for low In concentration (X
<sub>In</sub>
= 0-0.10) and then the growth temperature was decreased to 450 °C for high In concentration (X
<sub>In </sub>
= 0.10-0.30) to suppress the phase separation. The growth temperature was then increased to 650 °C and the graded In
<sub>y</sub>
Ga
<sub>1-y</sub>
P system was implemented to continue grading the lattice constant from In
<sub>0.30</sub>
Ga
<sub>0.70</sub>
As to InP, which allowed us to achieve InP on 6° offcut GaAs with a threading dislocation density of 7.9 × 10
<sup>6</sup>
cm
<sup>-2</sup>
and an RMS surface roughness of 33.0 nm on a 40 μm x 40 μm AFM scale. The second approach used GaAsSb alloys with compositional grading of the Sb concentration. Graded mixed-anion GaAsSb alloys grown at 575 °C did not exhibit phase separation, resulting in high quality InP lattice constant films on GaAs without the need to transition to another material system for compositional grading. We demonstrated a GaAsSb alloy on GaAs (with a grading rate of 1.06% strain/μm) lattice-matched to InP with a threading dislocation density of 4.7 x 10
<sup>6</sup>
cm
<sup>-2</sup>
and a roughness of 7.4 nm on a 40 μm x 40 μm AFM scale. It was further demonstrated that the threading dislocation density of the GaAsSb graded buffer can be lowered to 2.7 x 10
<sup>6</sup>
cm
<sup>-2</sup>
with a slower grading rate (0.64% strain/μm).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>324</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Compositionally-graded InGaAs-InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LI YANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BULSARA (Mayank T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEE (Kenneth E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FITZGERALD (Eugene A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>103-109</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000190378950170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0311009</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Two approaches for metalorganic chemical vapor deposition (MOCVD)-grown compositionally graded metamorphic buffers on 6° offcut bulk GaAs were investigated. The first approach consisted of tandem graded layers of InGaAs and InGaP with compositional grading of the In concentration. This tandem approach was found to be necessary because phase separation in the InGaAs alloys leads to surface roughening and high threading dislocation density when grading to lattice constants greater than that of In
<sub>0.30</sub>
Ga
<sub>0.70</sub>
As. An In
<sub>x</sub>
Ga
<sub>1-x</sub>
As graded buffer was grown at 700 °C for low In concentration (X
<sub>In</sub>
= 0-0.10) and then the growth temperature was decreased to 450 °C for high In concentration (X
<sub>In </sub>
= 0.10-0.30) to suppress the phase separation. The growth temperature was then increased to 650 °C and the graded In
<sub>y</sub>
Ga
<sub>1-y</sub>
P system was implemented to continue grading the lattice constant from In
<sub>0.30</sub>
Ga
<sub>0.70</sub>
As to InP, which allowed us to achieve InP on 6° offcut GaAs with a threading dislocation density of 7.9 × 10
<sup>6</sup>
cm
<sup>-2</sup>
and an RMS surface roughness of 33.0 nm on a 40 μm x 40 μm AFM scale. The second approach used GaAsSb alloys with compositional grading of the Sb concentration. Graded mixed-anion GaAsSb alloys grown at 575 °C did not exhibit phase separation, resulting in high quality InP lattice constant films on GaAs without the need to transition to another material system for compositional grading. We demonstrated a GaAsSb alloy on GaAs (with a grading rate of 1.06% strain/μm) lattice-matched to InP with a threading dislocation density of 4.7 x 10
<sup>6</sup>
cm
<sup>-2</sup>
and a roughness of 7.4 nm on a 40 μm x 40 μm AFM scale. It was further demonstrated that the threading dislocation density of the GaAsSb graded buffer can be lowered to 2.7 x 10
<sup>6</sup>
cm
<sup>-2</sup>
with a slower grading rate (0.64% strain/μm).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60D75</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A72L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A66</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Séparation phase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Phase separation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>High density</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dislocation filetée</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Threading dislocation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dislocación aterrajada</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Densité dislocation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Dislocation density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Vitesse déformation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Strain rate</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Plomb alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Lead alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Antimoine</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Antimony</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>GaAsSb</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat indium phosphure</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>6475</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6172L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>6166</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>213</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003290 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003290 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0311009
   |texte=   Compositionally-graded InGaAs-InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024